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Abstract. Microscopic many-body theory for electronic properties of solid states is developed with an
emphasis on the role of correlation memory effects. Heisenberg equation of motion, fluctuation-dissipation
theorem and operators of commutation have been used to calculate multiplasmon transmission electron
energy loss spectra. Multiquantum integral kinetic equation for the longitudinal complex dielectric function
is derived. Strong interaction between high-energy probe beam electrons penetrating the solid state and
plasma of valence electrons is taken into account. It is shown that average number of high-frequency
plasmons generated in every collision process is more than one for typical values of metal parameters. It is
obtained that excitation of a good few plasmons is simultaneous event. Calculated multiplasmon structure
of electron energy loss spectra coincides with experimental.

PACS. 71.10.-w Theories and models of many-electron systems – 73.22.Lp Collective excitations –
79.20.Uv Electron energy loss spectroscopy

1 Introduction

For the correlation effects influencing the optical prop-
erties of semiconductors the long-range Coulomb in-
teractions between the free carriers play an important
role [1–9]. They give rise different collective and coherence
effects which are intensively investigated at the present
time [1–9]. Among them there are effects that have been
interpreted in terms of strong coupling of e-h pairs with
low-frequency optical plasmons [1–6]. Thus, the modifica-
tion of carrier dynamics by absorption of one plasmon was
shown in the work [10]. The consecutive absorption and
emission of more then one plasmon was considered in the
paper [11]. A spectroscopic study of free-to-free, free-to-
bound and bound-to-bound e-h multi-plasmon recombi-
nation was fulfilled using photo and cathodo-luminescence
techniques [1–6]. Processes of photon emission and absorp-
tion with simultaneous creation of a few low-frequency
optical plasmons (�ωp

∼= 10 meV) as a typical electronic
eigenmodes induced by band charge carriers correlations
were investigated experimentally and theoretically in de-
tail [1–6]. It was found that a new composite wide radia-
tion band including about ten plasmon replicas appears at
high excitation levels in the region of electron-hole plasma
light emission. Multiplasmon optical transitions are im-
portant both for their emission band fine structure origin
manifestations and for understanding of many key features
of II–VI semiconductor luminescence spectra [1–6].
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As a line-width enhancement factor multiplasmon op-
tical transitions [1–6] satisfy energy conservation law
which one can state by equation ω = ωg ± nωp, where
ωp — frequency of long wavelength plasmon, n — num-
ber of plasmons generated, �ωg — band gap energy. Hence
emission of photon and several plasmons is simultaneous
process. In our previous works [1–6] we have introduced
a coupling constant Np (mean number of low-frequency
optical plasmons, emitted along with one photon). Mul-
tiplasmon optical transitions are actual at Np > 1 [1–6].
Analogous constant can be introduced for high frequency
�ωp

∼= 10 eV plasmons Np = 1/aBkF = 0.52rs which are
given in terms of Bohr radius aB = �

2/(me2) and Fermi
momentum kF = (3π2N)1/3. In the most cases the value
of parameter rs is not small (2 < rs < 6). Thus study of
electron inelastic scattering associated with excitation of
several high-frequency plasmons is actual as well.

The aim of this paper is to derive the multiplasmon
theoretical approach, which can be applied to the cor-
responding problem in transmission electron energy loss
spectroscopy. A large number of experimental and theoret-
ical papers [12–16] are devoted to the problem of electron
energy losses for various targets, in which multiple gen-
eration of high-frequency plasmons exhibiting the valence
electron oscillations in metals and semiconductors are con-
sidered as consecutive process [12–16], characterized by
electron mean free path concerning to plasmon generation.
This process consists of separate consecutive collisions
with generation of one plasmon in each collision (ω = ωp).
Thus for optical energy loss function Im{1/ε∗} with single
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plasmon pole is used Drude-Lindhard model [12–16]. In
this work we investigate spectra of electron energy losses
in solid state with taking into the consideration of simul-
taneous multiple generation of high-frequency plasmons.
We give general integral multiquantum kinetic equation
for a determination of a longitudinal dielectric function
ε(κ, ω) derived on the basis of fluctuation-dissipation the-
orem with using of commutation operators.

We have to mention at first that in works [1–11] two-
band model for semiconductors which includes the direct
Coulomb interactions was considered. According to this
model electrons and holes are in the dielectric media with
background dielectric constant of material and well-known
effective mass approximation is used. In this paper we
examine the electron energy loss spectra without of using
any model approximation.

2 General considerations

The starting point for our consideration is the Heisenberg
equation of motion for microscopic polarization operators
with taking into account of non-screened Coulomb interac-
tion within the many-body electrons and nucleus system.
The Hamiltonian from which we will derive the micro-
scopic quantum kinetic equations is

Ĥ =
∑

α,n,m

ĥα
nmâ+

nαâmα

+
1
2

∑

κ,α

V αα
κ

∑

m,n,l,p

eiκrα

l,n e−iκrα
p,m â+

lαâ+
pαâmαânα,

V αβ
κ =

4πqαqβ

V κ2
. (1)

Here â+
iα, âfα are the creation and destruction opera-

tors, V αβ
κ is the Fourier transform of Coulomb potential.

The i, f subscripts represent the quantum numbers sets,
describing the many-body system eigen-functions. The
α = e, n (qe = e) index distinguishes electrons and nu-
clei. The last term in equation (1) describes the repulsive
Coulomb interaction among electrons α = e and among
nuclei α = n. The interaction with electromagnetic field
and Coulomb attraction between electrons and nuclei are
included in operator

ĥα =
1

2mα

(
p̂α − qα

c
Âα(rα, t)

)2

+ qαϕ(rα, t)

+
∑

β

∑

κ

V α,β
κ eiκrα ρ̂β

κ, ρ̂β
κ

=
∑

n,m

e
−iκrβ
nm P̂ β

nm, P̂α
nm = â+

nαâmα, β �= α, (2)

where p̂α is the momentum operator, rα is the radius vec-
tor of particle with charge qα. Other designations are stan-
dard. Here it is emphasized that field (ϕ, A), which ap-
pears in equation (2) is the microscopic local field.

The response under the external longitudinal and
transversal electromagnetic fields perturbation of many-
body system with Hamiltonian (1) is determined by the

microscopic polarization operator time dependence [3,6].
In terms of creation and destruction operators accord-
ing to the formula (2) the time dependence of the mi-
cropolarization operator P̂α

if , has to be derived from the
Heisenberg equation of motion. Working out commuta-
tors, Heisenberg equation of motion for operator P̂α

if (t)
can be transformed to the next one

∂P̂α
if

∂t
=

i

�

[
Ĥ, P̂α

if

]
=

i

�

∑

n

(
ĥn iP

α
n f − Pα

i nĥfn

)

+
i

�

∑

κ

V αα
κ

∑

m,n,l

(
eiκrα

l,n e−iκrα

f,m â+
lαâ+

iαânαâmα

−eiκrα

l,i e−iκrα
n,m â+

nαâ+
lαâmαâfα

)
. (3)

The second part of equation (3) shows contributions due
to correlated four-point terms. A simple approximation
for the correlation contributions can be obtained within
the density matrix theory or within a Green’s function
method [7–11]. The Heisenberg equation of motion (3) for
operator P̂α

if , with transforming the four operator terms,
can be presented as (index α is temporarily omitted)

∂P̂if

∂t
=

i

�
(Êif P̂if − P̂if Ê

+
fi),

Êif = ˆ̃hf
ii +

1
2
(1 − δfi)

ˆ̃hfiĈfi +
i,f∑

n

(
ĥfn+

1
2
ˆ̃hC

fn)Ĉfn

)
.

(4)

The symbols i, f at sum after n mean that the terms with
n = i, f have to be excluded. The first term in equation (4)
determines the diagonal part of operator Êif

ˆ̃hf
ii = ĥii +

∑

n

f∑

m

M ii
nmP̂nm = Êi−

∑

n

M ii
nf P̂nf ,

Mkl
nm =

∑

κ

Vκ

(
eiκr

nme−iκr
kl − eiκr

nl e−iκr
km

)
. (5)

The matrix Mkl
nm, equation (5), is the sum of two terms

describing the direct and exchange Coulomb interaction
contributions respectively. Off-diagonal terms in equation
of motion (3) are turned to diagonal form (4), using the
commutation operators Ĉnm. The commutation operator
action upon the micropolarization operator P̂if , according
to the definition, consist of

ĈnmP̂if = [P̂nm, P̂if ] = P̂nfδim − P̂imδnf . (6)

Berezin has introduced in [17] the commutation operator
of equation of motion (3) ĈP̂if = [Ĥ, P̂if ]. The explicit
form of the expression for off-diagonal terms of operators
ˆ̃
hnm in equation (4) is determined as

ˆ̃
hfn = ĥfn + ĥC

fn, ĥC
fn =

ifn∑

m

if∑

l

Mfn
lm P̂lm. (7)
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The exchange energies in Hartree-Fock approximation can
be easily obtained from the expectation value of an opera-
tor ˆ̃hf

ii(t) (5). Correlation memory effects are described by
terms in equation (4), which contain commutation opera-
tors. Exact solution of Heisenberg equation of motion (4)
can be presented in the form

P̂if (t)=exp

⎧
⎨

⎩
i

�

t∫

0

Êif (s)ds

⎫
⎬

⎭ P̂if (0)

× exp

⎧
⎨

⎩− i

�

t∫

0

Ê+
fi (s)ds

⎫
⎬

⎭ . (8)

The calculation of macroscopical response under external
perturbations includes the operation of quantum statistic
averaging with using of the equilibrium density matrix.
Taking into account the diagonal part ˆ̃hf

ii (5) of the oper-
ator Êif , expanding T exponents (8) in series and carrying
out the simple decoupling like
〈
ˆ̃hf

ii(t1)
ˆ̃hi
ff (t2)...

ˆ̃hi
ff (tn)

〉 ∼=
〈
ˆ̃
hf

ii(t1)
〉〈

ˆ̃
hi
ff (t2)

〉
...
〈
ˆ̃
hi
ff (tn)

〉
(9)

we obtain

Pif (t) = 〈P̂if (t)〉 = Gif (t − s)Pif (s),

Gif (t − s) = exp

⎧
⎨

⎩i

t∫

s

ωif (s)ds

⎫
⎬

⎭ . (10)

This result for micropolarization (10) corresponds to tak-
ing into consideration of first term in cumulant expansion
method [18]. The first order cumulant is

�ωif = �ωHF
if =

〈
ˆ̃hf

ii − ˆ̃hi
ff

〉

=
〈
Êi − Êf

〉
− M ii

ff (nf − ni), nf =
〈
P̂ff

〉
, (11)

where angular brackets denote average over the density
of states. Beside the Hartree-Fock difference of proper en-
ergies 〈Êi − Êf 〉 of initial i and final f states (Cumans
approximation), equation (11) takes into account the un-
screened Coulomb interaction between the quasi-particle
in f state and quasi-hole in i state. The second order cu-
mulant describes the effect of exciton Coulomb interaction
screening and multiquantum transitions.

To develop a quantum integral kinetic equation for
solid states with account of correlation effects we use the
exact solution of Heisenberg equation (3) for operator
P̂if (t)in the form

P̂if (t) = Gif (t − s)P̂if (s)

+

t∫

s

Gif (t − t1)

{
∂P̂if (t1)

∂t1
− iωif (t1)P̂if (t1)

}
dt1. (12)

To obtain ωif (t) first of all one notes that Heisenberg
equations (3, 4) contain diagonal and off-diagonal con-
tributions. Upon inserting equation (4) into (12) and av-
eraging with respect to the density of states we obtain the
expression for average transition frequency ωif (t) from the
diagonal part of expectation values, defined as

〈
∂Pif (t1)

∂t1

〉
=

〈(
∂Pif (t1)

∂t1

)d
〉

+

〈(
∂Pif (t1)

∂t1

)off
〉

,

〈(
∂Pif (t1)

∂t1

)d
〉

= ωif 〈P̂ if 〉. (13)

Within the Hartree-Fock like approximation, the average
microscopic equation of motion.

〈
∂Pif (t1)

∂t1

〉
∼= i

�

〈(ˆ̃
hf

ii − ˆ̃
hi
ff

)
P̂if

〉

∼= i

�

〈(ˆ̃
hf

ii − ˆ̃
hi
ff

)〉〈
P̂if

〉
= ωif

〈
P̂if

〉
(14)

leads to the results obtained in equations (9–11). It should
be noted, that simple approximation (14) is exactly equiv-
alent to that obtained by infinite series summarizing in
equations (8–11). Upon inserting equation (4) into (12)
and taking the off-diagonal term hif (t1) into considera-
tion we get

P̂if (t)=Gif (t−s)P̂if (s)+

t∫

s

Gif (t − t1)
ˆ̃hif (t1))(nf−ni)dt1.

(15)
As it is known, the random phase approximation sup-
poses the replacement of instantaneous field created by
plasma with average one [15]. The micropolarization op-
erator (15), calculated in the Hartree-Fock like approx-
imation with using of average transition frequency, can
be used next for evaluation of the response function, the
light absorption coefficient and the spontaneous recombi-
nation rate. Equation (15) for many-body system is more
realistic one comparison with equation (10). In arriving
at equation (15) we have taken into account off-diagonal
contribution in Hartree-Fock like approximation

〈(
∂P̂if (t1)

∂t1

)off

HF

〉
=

i

�

〈(
P̂ff − P̂ii

)
ˆ̃hfi

〉

=
i

�

〈ˆ̃
hfi

〉
(nf − ni). (16)

This term leads to the important consequences for kinetic
properties of solid states. Equations (11, 15, 16) at the
level of dynamical HF approximation allow to include ran-
dom phase like approximation into the consideration. To
study the correlation contributions to ωif (t) one has to go
beyond the HF approximation. We start by considering
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the deviations of the exact terms from their correspond-
ing HF factorized parts

〈
∂P̂if (t1)

∂t1

〉
−
〈(

∂P̂if (t1)
∂t1

)d

HF

〉

−
〈(

∂P̂if (t1)
∂t1

)off

HF

〉
=

〈(
∂P̂if (t1)

∂t1

)

C

〉
. (17)

One remarkable feature of equation (17) is that for the
quasi-particle picture (H → Hq) the correlation part is
identically zero

〈(
∂P̂ q

if (t1)
∂t1

)

C

〉
= 0, P̂ q

if (t) = e
i
�

ĤqtP̂if e
− i

�
Ĥqt,

Ĥq =
∑

nα

EnαP̂α
nn. (18)

The simple analysis shows that the exact solution for op-
erator of evolution exp(−iĤt/�) can be written in the
form

exp
(
− i

�
Ĥ t

)
= exp

(
− i

�
Ĥqt

)
− i

�

t∫

0

exp
(
− i

�
Ĥ t

)
T

× exp

⎛

⎝ i

�

t∫

s

V̂ (s1)ds1

⎞

⎠ V̂ (s)ds,

V̂ = Ĥ − Ĥq.
(19)

To develop the equation of motion for microscopic polar-
ization with account of memory effect we use the approx-
imation

〈(
∂P̂

(
if t1)

∂t1

)

C

〉
=

i

�

t∫

0

〈[
V̂ (s),

(
∂P̂if (t)

∂ t

)

C

]〉
ds,

V̂ (t) = e
i
�

Ĥ tV̂ e−
i
�

Ĥ t. (20)

It is instructive to note here that time-dependent op-
erators are expressed in the Heisenberg picture. Conse-
quently, a fluctuation-dissipation theorem [15] can be used
to calculate the correlator density-density. Making use of
equation (20) and averaging equation (12) we obtain

ωif (t) = ωHF
if (t) +

〈
ω̂f

i (t) − ω̂i+
f (t)

〉

ω̂f
i (t) =

i

�2

t∫

0

{
ˆ̃hf

ii(s)
(
ˆ̃hf

ii(t) − ˆ̃hi
ff (t)

)

+
i∑

n

Gni(t − s)
{

ˆ̃hin(s)ˆ̃hni(t) (1 − nn(s))

+ ˆ̃hni(t)
ˆ̃hin(s)nn(s)

}
ds. (21)

At the level of the quasi-particle approximation Gni(t) =
exp(iωni t), were one ignores Coulomb interaction, equa-
tion (21) can be written as

ωif (t) = ωHF
if (t) + ω

(2)
if (t), ω

(2)
if (t)

= ωi(t) − ω∗
f (t), ωi(t)

=
1
�2

i∑

n

〈∣∣∣ĥin

∣∣∣
2
〉

ωin
(1 − exp(−iωint)) . (22)

Transition frequencies ωni have to be calculated self-
consistently in quasi-particle picture. This approximation
allows the evaluation of energy spectrum for close levels,
when the perturbation theory is not valid. Coulomb inter-
action gives the contribution into equation (21).

〈
ˆ̃hC

in(t)ˆ̃hC
ni(s)

〉
=
∑

κ

V 2
κ

∣∣eiκr
in

∣∣2〈ρκ(t)ρκ(s)〉 (23)

which is proportional to V 2
κ and diverges as κ−4 at κ → 0

if we restrict the consideration with second order correc-
tion of perturbation theory. To avoid this difficulty some
authors replaces the unscreened Coulomb potential by
its screened value. But screening should result from the
proper treatment of correlations. The expectation value
of charge density operator’s multiplication 〈ρκ(t)ρκ(s)〉,
taken in different time points in equation (23), specify
memory effects. It can be precisely calculated within the
fluctuation-dissipation theorem [15] and can be expressed
in terms of structure factor or inverse dielectric function.

〈ρκ(t)ρκ(s)〉 =
�

πVκ

∞∫

−∞
exp(−iω(t− s))[n(ω)

+ 1]Im
{

1
ε∗(κ, ω)

}
dω,

n(ω) =
[
exp

(
�ω

k0T

)
− 1

]−1

. (24)

At this stage we already have a closed set of integral equa-
tions. The correlator density-density from equation (22)
depends on the longitudinal dielectric function ε(κ, ω)
equation (24) [15]. On the other hand dielectric func-
tion ε(κ, ω) depends on the micro-polarization in its turn.
Hence equations (15, 21–24) constitute a self-consistent
set of multi-quantum integral kinetic equations. The four-
operator expectation values are multi-dimensional inte-
grals over products of distribution functions and micro-
polarization’s with matrix elements of the dynamically
screened Coulomb potential (24). The next section is used
to present and discuss several results, which stem from
this formulation.

3 Electron energy loss spectrum

Experiments in transmission electron energy loss spec-
troscopy determine the structure factor — correlator
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density-density, which can be obtained from the imaginary
part of inverse longitudinal dielectric function ε(κ, ω) by
using of fluctuation dissipation theorem [15]. At the level
of Born approximation, the collision rate R(κ, ω)

R(κ, ω) = 2Vκ(n(ω) + 1)Im
{

1
ε∗(κ, ω)

}
,

Vκ =
4πe2

V κ2
, (25)

depends on losses of electron energy �ω and losses of mo-
mentum �κ which in theirs turn define energy and mo-
mentum of longitudinal plasmas eigenmodes. According
to the energy and momentum conservation laws we have

�
2κ2

2m
= 2E + �ω − 2 cos θ

√
E(E + �ω), (26)

where E is the energy of electrons having passed through
target, θ is the scattering angle. Valence electrons can be
considered as practically free electrons at high energies
≈�ωp

∼= 10 eV and don’t “feel” periodical potential of
solid state. According to the definition [15] in linear ap-
proximation

1
ε(κ, ω)

= 1 + F (κ, ω),

F (κ, ω) =
i

�
Vκ

∞∫

0

eiωt 〈[ρ̂−κ(0), ρ̂κ(t)]〉 dt,

ρ̂κ =
∑

k

a+
k ak+κ. (27)

Using results obtained, inserting the equation (15)
into (27), we can calculate the longitudinal dielectric func-
tion with account of multiquantum processes

ε(κ, ω) = 1 − i

�
Vκ

∑

κ

Gk+κ,k(ω)(nk − nk+κ)

×
{

1 − i

�

∑

q

Vq(nk+q − nk+κ+q)Gk+q,k+q+κ(ω)

}
,

nk = 〈P̂kk〉. (28)

We have included here the Coulomb-exchange contribu-
tion (Fock-field) to the polarization field. The results of
the work [19] can be obtained from equations (27, 28) if
one has calculated the transition frequency ωk,k+κ equa-
tion (21) at the level of first order approximation of
exchange-interacting electrons �ωHF

k,k+κ = ek − ek+κ −∑
kq Vq(nk+q − nk+q+κ). Equation (28) is integral equa-

tion for dielectric function ε(κ, ω), because there are inte-

gral dependence between the transition frequency

�ωk+κk = ẽk+κ − ẽ∗k,

ẽk = ek −
∑

kq

Vqnk+q + i

t∫

0

ds

∞∫

−∞
dν

×
∑

q

Kq(ν) {nk+q exp(−iν(t − s))

+ (1 − nk+q) exp(iν(t − s))}Gk+q,k(t − s),
(29)

and dielectric function ε(κ, ω), which has to be calculated
selfconsistently by iteration method, since according to
the definition

Kq(v) =
Vq

π
(nv + 1)Im

{
1

ε∗(q, v)

}
(30)

the function Kq(v) (30) is expressed in terms of dielec-
tric function itself. The two first nonintegrative terms in
equation (29) defines transition energy in Hartree-Fock
like approximation, the second term describes the en-
ergy renormalization (memory correlation corrections to
electrons energies) and multiquantum collision processes.
The dynamical screening of correlation contribution in
quasi-particle energy (time independent contribution in
Eq. (29)) is taken into account and is in accordance with
that obtained by Green function method [20] if one takes
random phase approximation for dielectric function in
equation (30). More than that, the Coulomb interaction
leads to the multiquantum collision processes.

As it is known [15] in random phase approximation
the dielectric function ε(q, ν) is equals to zero if ν =
ωp =

(
4πNe2/m

)1/2 (ωp is the plasma frequency, N —
the electron concentration). Considering plasmons as un-
damped excitations the contribution from high frequencies
into integral over v (29) can be calculated using so-called
plasmon-pole approximation

Im
{

1
ε∗(q, ν)

}
=

π

2
ωp[δ(v − ωp) − δ(v + ωp)]. (31)

At small values of plasmon momentum q (q < qc, qc =
ωp/vF ) plasma oscillations damp weakly and ωk,k+q < ωp.
Hence we can get Gk+q,k(t − s) ∼= 1 in equation (29). By
taking into account of Landau damping γp and relaxation
time of quasi-particles 1/γ we obtain

Gk,k+κ(t) = exp
{
iωHF

k,k+κt − γt − Np

} ∞∑

n=−∞
In(z)

× exp{ny + inωpt − nγpt}, (32)

where

z = Np

[
1 − (nk − nk+κ)2

]1/2
,

exp(y) =
1 + nk − nk+κ

1 + nk+κ − nkk+κ
,

Np =
2
π

(aBkF )−1 = 0, 33 rs. (33)
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Damping coefficient γ is obtained at t → ∞ limit, when
limt→∞(1 − e−iωt)/ω2 = πtδ(ω) + i π sign tδ′(ω) and is
determined by imaginary part of dielectric function ε(q, v)
at frequencies v = ωk,q+κ and v = ωk+q+κ,κ+q

γ =
π

�

∑

q

[Kq(ωk,k+q) + Kq(ωq+k+κ,k+q)]. (34)

The mean number of high-frequency plasmons Np, gener-
ated in every collision process, is determined by the ex-
pression Np = 2e2qc/π�ωp. For typical values of metal pa-
rameters the numerical value of Np is more then one. Using
sum rule for dielectric function in accordance with [3] we
get Np = e2κFT /�ωp =

√
3

aBkF
= 0.9rs (κ2

FT = 6πNe2/EF ,
κ−1

FT is Thomas-Fermi radius). In the simplest kind of
approximation for the polarization operator one obtains
P̂k,k+κ(t) = Gk,k+κ(t)P̂k,k+κ(0). Using equation (31) we
get expression for collision rate equation (25) (k0T � �ωp)
in the form

R(κ, ω) = exp(−Np)
∞∑

n=−∞
In(Np)R0(κ, ω + nωp),

R0(κ, ω + nωp) = 2(n(ω) + 1)ImQ∗(κ, ω + nωp). (35)

Here R0(κ, ω) is the collision rate for non-interacting elec-
tron gas [15] without account of damping

Q(κ, ω) = Vκ

∑

k

nk − nk+κ

ek − ek+κ + �ω + iγ
, γ → 0. (36)

Function R(κ, ω) can be transformed to R0(κ, ω) at
Np = 0. In Figure 1 there are represented results of en-
ergy loss spectra calculations generated by equation (35)
for different values of Np and κ (plasmon momentum κ is
in units of kF , kF = (3π2N)1/3). As it is clear from equa-
tion (35) and Figure 1 electron energy loss spectra have
multiplasmon structure. At Np > 1 there is the Poison
distribution for satellites intensities.

As the more realistic approximation for electron energy
loss spectra function we use equations (28) and (32). For
dielectric function we obtain the expression:

ε(κ, ω) = 1 − exp(−Np)

×
∞∑

n=−∞
In(Np)Q(κ, ω + nωp + inγp + iγ). (37)

Random phase approximation for dielectric function
ε(κ, ω) is easy to obtain from equation (37) if we equate Np

to zero and neglect damping (γ = γp = 0). As we can see
from equation (37) the frequency dependence for plasmon-
less (n = 0) and multiplasmon contributions in dielectric
function is similar. Account of dispersion of plasmons and
electrons kinetic transition energy �ωk,k+q in the function
Gk,k+q(t) leads to the additional enhancement of loss spec-
tra line-width. Here we restrict the analysis in this paper
to the simple situation, when the line-width of multiplas-
mon replicas is determined by the damping coefficients γ,

Fig. 1. Collision rate distribution of scattering electrons in
metals calculated with (35), (36) at γ = 0, N = 1023 cm−3,
Np = 2, 3 and different values k: (a) k = 0.9 kF , (b) k = 0.7 kF ,
(c) k = 0.5 kF , (d) k = 0.3 kF .

Fig. 2. Frequency dependence of collision rate R, calculated
with using of equations (25) and (37), Gk+q,k(t − s) ∼= 1 at
different values of k, (a) κ = 0.81 kF , (b) κ = 1.05 kF , (c)
κ = 1.15 kF , (d) κ = 1.2 kF , and γ = 10−2ωp, γp = 0, N =
1023 cm−3, Np = 2.

γp and by the transition energy ek − ek+κ in the function
Gk+q,k(t − s) in equation (31). The electron energy loss
spectra resulting from our model are presented in Figure 2.

The results obtained for collision rate (Fig. 2) as func-
tion of ω are in accordance with experimental data [12–16].
Electron energy loss spectra have multiplasmon structure.
If Np > 1 the generation of a good few plasmons is simul-
taneous event not consecutive.

Many body interactions cause the electron energy loss
spectra to change. This change is a result of simultaneous
generation of several plasmons.
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